
Robust Erlang
(PFP Lecture 11)

John Hughes

Genesis of Erlang

• Problem: telephony systems in the late 1980s
– Digital

– More and more complex

– Highly concurrent

– Hard to get right

• Approach: a group at Ericsson research
programmed POTS in different languages

• Solution: nicest was functional
programming—but not concurrent

• Erlang designed in the early 1990s

”Plain Old Telephony
System”

• ATM switch (telephone
backbone), released in
1998

• First big Erlang project

• Born out of the ashes of a
disaster!

Mid 1990s: the AXD 301

AXD301 Architecture

Subrack

16 data boards
2 million lines of C++

10 Gb/s

1,5 million LOC
of Erlang

• 160 Gbits/sec (240,000 simultaneous calls!)

• 32 distributed Erlang nodes

• Parallelism vital from the word go

Typical Applications Today

Facebook Chat

Invoicing services for web
shops—in 6 countries!

Distributed no-SQL database
serving e.g. all Denmark’s
medicine card data

What do they all have in common?

• Serving huge numbers of clients through
parallelism

• Very high demands on quality of service: these
systems should work all of the time

AXD 301 Quality of Service

• 7 nines reliability!
– Up 99,99999% of the

time

• Despite
– Bugs

• (10 bugs per 1000 lines
is good)

– Hardware failures
• Always something

failing in a big cluster

• Avoid any SPOF

Example: Area of a Shape

 area({square,X}) -> X*X;
area({rectangle,X,Y}) -> X*Y.

8> test:area({rectangle,3,4}).
12
9> test:area({circle,2}).
** exception error: no function clause matching
test:area({circle,2}) (test.erl, line 16)
10>
 What do we do

about it?

Defensive Programming

 area({square,X}) -> X*X;
area({rectangle,X,Y}) -> X*Y;
area(_) -> 0.

Anticipate a
possible

error

Return a
plausible

result.

11> test:area({rectangle,3,4}).
12
12> test:area({circle,2}).
0

No crash any
more!

Plausible Scenario

• We write lots more code manipulating shapes

• We add circles as a possible shape
– But we forget to change area!

<LOTS OF TIME PASSES>

• We notice something doesn’t work for circles
– We silently substituted the wrong answer

• We write a special case elsewhere to ”work
around” the bug

Handling Error Cases

• Handling errors often accounts for > ⅔ of a
system’s code

– Expensive to construct and maintain

– Likely to contain > ⅔ of a system’s bugs

• Error handling code is often poorly tested

– Code coverage is usually << 100%

• ⅔ of system crashes are caused by bugs in the
error handling code

But what can we do
about it?

Don’t Handle Errors!

Stopping a
malfunctioning

program

Letting it
continue and
wreak untold

damage

…is better
than …

Let it crash… locally

• Isolate a failure within one process!

– No shared memory between processes

– No mutable data

– One process cannot cause another to fail

• One client may experience a failure… but the
rest of the system keeps going

How do we handle this?

We know what to do…

Detect failure

Restart

Using Supervisor Processes

• Supervisor process is not corrupted

– One process cannot corrupt another

• Large grain error handling

– simpler, smaller code

Supervisor
process

Crashed
worker
process

Detect failure

Restart

Supervision Trees

Super-
visor

Super-
visor

Super-
visor

Super-
visor

Worker Worker

Small, fast
restarts

Large, slow
restarts

Restart one or
restart all

Detecting Failures: Links

EXIT signal

Linked
processes

Linked Processes

”System”
process

EXIT signal

This all works
regardless of where
the processes are
running

Creating a Link

• link(Pid)

– Create a link between self() and Pid

– When one process exits, an exit signal is sent to
the other

– Carries an exit reason (normal for successful
termination)

• unlink(Pid)

– Remove a link between self() and Pid

Two ways to spawn a process

• spawn(F)

– Start a new process, which calls F().

• spawn_link(F)

– Spawn a new process and link to it atomically

Trapping Exits

• An exit signal causes the recipient to exit also

– Unless the reason is normal

• …unless the recipient is a system process

– Creates a message in the mailbox:
{’EXIT’,Pid,Reason}

– Call process_flag(trap_exit,true) to
become a system process

An On-Exit Handler

• Specify a function to be called when a process
terminates

on_exit(Pid,Fun) ->
 spawn(fun() -> process_flag(trap_exit,true),
 link(Pid),
 receive
 {'EXIT',Pid,Why} -> Fun(Why)
 end
 end).

Testing on_exit
5> Pid = spawn(fun()->receive N -> 1/N end end).

<0.55.0>

6> test:on_exit(Pid,fun(Why)->

 io:format("***exit: ~p\n",[Why]) end).

<0.57.0>

7> Pid ! 1.

***exit: normal

1

8> Pid2 = spawn(fun()->receive N -> 1/N end end).

<0.60.0>

9> test:on_exit(Pid2,fun(Why)->

 io:format("***exit: ~p\n",[Why]) end).

<0.62.0>

10> Pid2 ! 0.

=ERROR REPORT==== 25-Apr-2012::19:57:07 ===

Error in process <0.60.0> with exit value:

{badarith,[{erlang,'/',[1,0],[]}]}

***exit: {badarith,[{erlang,'/',[1,0],[]}]}

0

A Simple Supervisor

• Keep a server alive at all times

– Restart it whenever it terminates

• Just one problem…

keep_alive(Fun) ->
 Pid = spawn(Fun),
 on_exit(Pid,fun(_) -> keep_alive(Fun) end).

How will anyone ever
communicate with Pid?

Real supervisors
won’t restart too
often—pass the

failure up the
hierarchy

The Process Registry

• Associate names (atoms) with pids

• Enable other processes to find pids of servers,
using

– register(Name,Pid)

• Enter a process in the registry

– unregister(Name)

• Remove a process from the registry

– whereis(Name)

• Look up a process in the registry

A Supervised Divider

 divider() ->
 keep_alive(fun() -> register(divider,self()),
 receive
 N -> io:format("~n~p~n",[1/N])
 end
 end).

4> divider ! 0.

=ERROR REPORT==== 25-Apr-2012::20:05:20 ===

Error in process <0.43.0> with exit value:

{badarith,[{test,'-divider/0-fun-0-',0,

 [{file,"test.erl"},{line,34}]}]}

0

5> divider ! 3.

0.3333333333333333

3

Supervisors supervise servers

• At the leaves of a supervision tree are
processes that service requests

• Let’s decide on a protocol

client server

{{ClientPid,Ref},Request}

{Ref,Response}

rpc(ServerName,
Request)

reply({ClientPid,
 Ref},

Response)

rpc/reply

 rpc(ServerName,Request) ->
 Ref = make_ref(),
 ServerName ! {{self(),Ref},Request},
 receive
 {Ref,Response} ->
 Response
 end.

reply({ClientPid,Ref},Response) ->
 ClientPid ! {Ref,Response}.

account(Name,Balance) ->
 receive
 {Client,Msg} ->
 case Msg of
 {deposit,N} ->
 reply(Client,ok),
 account(Name,Balance+N);
 {withdraw,N} when N=<Balance ->
 reply(Client,ok),
 account(Name,Balance-N);
 {withdraw,N} when N>Balance ->
 reply(Client,{error,insufficient_funds}),
 account(Name,Balance)
 end
 end.

Example Server

account(Name,Balance) ->
 receive
 {Client,Msg} ->
 case Msg of
 {deposit,N} ->
 reply(Client,ok),
 account(Name,Balance+N);
 {withdraw,N} when N=<Balance ->
 reply(Client,ok),
 account(Name,Balance-N);
 {withdraw,N} when N>Balance ->
 reply(Client,{error,insufficient_funds}),
 account(Name,Balance)
 end
 end.

Send a reply

account(Name,Balance) ->
 receive
 {Client,Msg} ->
 case Msg of
 {deposit,N} ->
 reply(Client,ok),
 account(Name,Balance+N);
 {withdraw,N} when N=<Balance ->
 reply(Client,ok),
 account(Name,Balance-N);
 {withdraw,N} when N>Balance ->
 reply(Client,{error,insufficient_funds}),
 account(Name,Balance)
 end
 end.

Change the state

A Generic Server

• Decompose a server into…

– A generic part that handles client—server
communication

– A specific part that defines functionality for this
particular server

• Generic part: receives requests, sends replies,
recurses with new state

• Specific part: computes the replies and new
state

A Factored Server

 server(State) ->
 receive {Client,Msg} -> {Reply,NewState} = handle(Msg,State),
 reply(Client,Reply),
 server(NewState)
 end.

handle(Msg,Balance) ->
 case Msg of
 {deposit,N} -> {ok, Balance+N};
 {withdraw,N} when N=<Balance -> {ok, Balance-N};
 {withdraw,N} when N>Balance ->
 {{error,insufficient_funds}, Balance}
 end.

How do we
parameterise the

server on the
callback?

Callback Modules

• Remember:

• Passing a module name is sufficient to give
access to a collection of ”callback” functions

foo:baz(A,B,C)
Call function baz in

module foo

Mod:baz(A,B,C)
Call function baz in

module Mod (a
variable!)

A Generic Server

 server(Mod,State) ->
 receive {Client,Msg} ->
 {Reply,NewState} = Mod:handle(Msg,State),
 reply(Client,Reply),
 server(Mod,NewState)
 end.

new_server(Name,Mod) ->
 keep_alive(fun() -> register(Name,self()),
 server(Mod,Mod:init()) end).

The Bank Account Module

• This is purely sequential (and hence easy) code

• This is all the application programmer needs
to write

handle(Msg,Balance) ->
 case Msg of
 {deposit,N} -> {ok, Balance+N};
 {withdraw,N} when N=<Balance -> {ok, Balance-N};
 {withdraw,N} when N>Balance ->
 {{error,insufficient_funds}, Balance}
 end.
init() -> 0.

What Happens If…

• The client makes a bad call, and…

• The handle callback crashes?

• The server crashes

• The client waits for ever for a reply

• Let’s make the client crash instead

Is this what
we want?

Erlang Exception Handling

• Evaluates to V, if <expr> evaluates to V

• Evaluates to {’EXIT’,Reason} if expr throws an
exception with reason Reason

catch <expr>

Generic Server Mk II

 server(Mod,State) ->
 receive
 {Pid,Msg} ->
 case catch Mod:handle(Msg,State) of
 {'EXIT',Reason} ->
 reply(Name,Pid, {crash,Reason}),
 server(Mod,…………..);
 {Reply,NewState} ->
 reply(Name,Pid, {ok,Reply}),
 server(Mod,NewState)
 end
 end.

rpc(Name,Msg) ->
 …
 receive
 {Ref,{crash,Reason}} ->
 exit(Reason);
 {Ref,{ok,Reply}} ->
 Reply
 end.

What should we
put here?

We don’t have a new state!

State

Transaction Semantics

• The Mk II server supports transaction
semantics

– When a request crashes, the client crashes…

– …but the server state is restored to the state
before the request

• Other clients are unaffected by the crashes

Hot Code Swapping

• Suppose we want to change the code that the
server is running

– It’s sufficient to change the module that the
callbacks are taken from

server(Mod,State) ->
 receive
 {Client, {code_change,NewMod}} ->
 reply(Client,{ok,ok}),
 server(NewMod,State);
 {Client,Msg} -> …
 end.

The State is not
lost

Two Difficult Things Before Breakfast

• Implementing transactional semantics in a
server

• Implementing dynamic code upgrade without
losing the state

Why was it easy?

• Because all of the state is captured in a single
value…

• …and the state is updated by a pure function

gen_server for real

• 6 call-backs
– init

– handle_call

– handle_cast—messages with no reply

– handle_info—timeouts/unexpected messages

– terminate

– code_change

• Tracing and logging, supervision, system
messages…

• 70% of the code in real Erlang systems

OTP

• A handful of generic behaviours
– gen_server

– gen_fsm—traverses a finite graph of states

– gen_event—event handlers

– supervisor—tracks supervision tree+restart
strategies

• And there are other more specialised
behaviours…
– gen_leader—leader election

– …

Erlang’s Secret

• Highly robust

• Highly scalable

• Ideal for internet servers

• 1998: Open Source Erlang (banned in Ericsson)

• First Erlang start-up: Bluetail

– Bought by Alteon Websystems

• Bought by Nortel Networks $140 million in
<18 months

SSL Accelerator

• ”Alteon WebSystems' SSL
Accelerator offers
phenomenal performance,
management and scalability.”

– Network Computing

2004 Start-up: Kreditor

• New features every few weeks—never down

• ”Company of the year” in 2007

• Growth : >13,000% (to over 700 people!)

• Market leader in Scandinavia

Kreditor

Order 100:-

Order details

97:-

invoice

100:-

Erlang Today

• Scaling well on multicores

– 64 cores, no problem!

• Many companies, large and small

– Amazon/Facebook/Nokia/Motorola/HP…

– Ericsson recruiting Erlangers

– No-sql databases (Basho, CouchDB, Hibari…)

– Many many start-ups

• ”Erlang style concurrency” widely copied

– Akka in Scala (powers Twitter), Cloud Haskell…

First Intel
dual core
released

Erlang Events

• Erlang User Conference, Stockholm

• Erlang Factory (multiple tracks)
– London

– San Francisco

• Erlang Factory Lite
– Brisbane, Paris, Munich, Edinburgh, Amsterdam

– Brussels, Krakow, Zurich, St.Andrews…

• ErlangCamp
– Chicago, Spain…

Coming up on Thursday…

MAP/REDUCE

